Contrairement à la fonction residuals(), la fonction rstudent() permet d’obtenir des résidus de même variance. Ce critère est nécessaire pour pouvoir étudier et comparer les résidus. reg_simp <- lm(Sepal.Length~Petal.Length, data=iris) #On réalise une régréssion linéaire   residus=rstudent(reg_simp) #On calcule les residus   plot(residus, ylab= »Résidus ») #On represente les résidus dans un graphique   abline(h=c(-2,0,2), lty=c(2,1,2)) #La fonction abline permet d’ajouter des droites d’ordonnées -2, 0 et 2 En théorie, 95% des résidus se trouvent dans l’intervalle [-2,2]. C’est le cas ici puisque seulement 4 individus sur 150 sont en dehors de cet intervalle. Les individus à l’extérieur de l’intervalle sont des individus extrêmes.   Read More →

La régression linéaire simple permet de modéliser une relation linéaire entre deux variables quantitatives dans le but d’expliquer un phénomène ou de le prédire. #On commence par représenter les données : plot(Sepal.Length~Petal.Length, data=iris) #On constate que la relation entre la largeur des sépales et celle des pétales semble être linéaire   #On estime les paramètres : Reg.simp <- lm(Sepal.Length~Petal.Length, data=iris)   #Call: #lm(formula = Sepal.Length ~ Petal.Length, data = iris)   #Residuals: #     Min       1Q   Median       3Q      Max #-1.24675 -0.29657 -0.01515  0.27676  1.00269   #Coefficients: #             Estimate Std. Error t value Pr(>|t|)    #(Intercept)   4.30660    0.07839   54.94   <2e-16 *** #Petal.Length  0.40892    0.01889   21.65   <2e-16 *** #— #Signif. codes: Read More →

Le test d’égalité teste l’hypothèse H0 : µ1 = µ2. La puissance d’un test est la probabilité de rejeter l’hypothèse H0 sans commettre une erreur, c’est-à-dire lorsque µ1 est effectivement  différente de µ2.   Nous voulons donc calculer la puissance du test avec un nombre n d’individus grâce à la fonction power.t.test().   Exemple : dans une expérience nous avons un écart type de 1.7, une moyenne de 1 et on prend le seuil classique α=5%. On calcule la puissance du test avec 15 individus par groupe. power.t.test(n=15, delta=1, sd=1.7, sig.level=0.05)$power [1] 0.3430475     Si l’on décide de n’utiliser que 15 individus dans l’expérimentation, alors onRead More →

Les conditions permettent d’exécuter une commande en fonction d’une ou plusieurs conditions. La forme la plus simple s’écrit :   if (condition){ +    commande1 +    commande2 +    … +}   Exemple :   B<-TRUE x<-2   if (B==TRUE){      x<-x+1      y<-10 }   x [1] 3 y [1] 10   Dans ce cas là si B est différent de TRUE rien n’est effectué. Pour ajouter une des commandes lorsque que la première condition n’est pas vérifiée on utilise else :   if (condition){ +    commande1 +    commande2 +    … } else (condition){ +    commande1 +    commande2 +    … +}   Exemple : B<-FALSE x<-2   if (B==TRUE){     Read More →

La loi Gamma ou d’Euler est une loi très utiles pour les propriétés de décroissance rapide. La loi Gamma peut décrire des phénomènes de durée de vie, pour l’étude du temps écoulé entre deux faits.   Sur R, les options shape et scale correspondent respectivement α et β. Nous pouvons calculer la densité de probabilité de la loi G(1,3) pour la valeur x=2 grâce à la fonction dgamma() : X<-2alpha<-1beta<-3 dgamma(x,shape=alpha,scale=beta)    Nous pouvons calculer la probabilité que x soit inférieur ou égal à 2 sur la loi G(1,3), c’est-à-dire calculer la fonction de répartition F(2) grâce à la fonction pgamma() : X<-2alpha<-1beta<-3 pgamma(x,shape=alpha,scale=beta)     Nous pouvons également calculer la probabilité que x soit supérieur à 2 sur la loi G(1,3) : X<-2alpha<-1beta<-3Read More →

Le test du khi2 permet de tester l’indépendance de deux variables pour cela nous calculons la valeur de la statistique  ainsi que la probabilité critique.   Pour pouvoir réaliser ce test il est nécessaire d’avoir un échantillonnage aléatoire dans chaque échantillon et que chaque effectif théorique soit supérieur ou égal à 5.   Pour effectuer ce test nous utilisons la fonction chisq.test().   Exemple : Nous nous demandons si nombre de fumeurs dépend de l’âge ou non, c’est-à-dire : l’âge influence t’il la propension à fumer?   mat<-matrix(c(15,10,15,20,10,10),3) dimnames(mat) <- list(c(« 15-30″, »31-45″, »46-70 ») ,c(« oui », »non »))   mat       oui non 15-30  15  20 31-45  10  10 46-70  15  10  Read More →

Le test de Mac Nemar Permet de savoir si deux proportions appariées mesurées sont identiques ou non.   Pour pouvoir réaliser ce test il est nécessaire d’avoir un échantillonnage aléatoire dans chaque échantillon, que chaque effectif soit supérieur ou égal à 5 et que tous les individus passent d’un état à l’autre.   Pour appliquer le test de Mac Nemar nous utilisons la fonction mcnemar.test().   Exemple : Nous nous demandons si la proportion de fumeur  a varié  dans le temps ? mat<-matrix(c(20,2,10,28),2) dimnames(mat) <- list(« avant » = c(« fumeur », « non    fumeur »), »apres » = c(« fumeur », « non fumeur »))   mat             apres avant        fumeur non fumeur   fumeur        Read More →

La fonction prop.test() permet de savoir si deux proportions mesurées sont identiques ou non.   Pour réaliser ce test il est nécessaire d’avoir un échantillonnage aléatoire dans chaque échantillon, que chaque effectif soit supérieur ou égal à 5 et que tous les échantillons soient indépendants.   Exemple : On se demande si la proportion de fumeuses est différente de celle des fumeurs mat<-matrix(c(15,10,15,20),2) dimnames(mat) <- list(c(« homme », »femme ») ,c(« oui », »non »))   > mat       oui non homme  15  15 femme  10  20   #On obtient une matrice avec 4 effectifs suppérieurs à 5   prop.test(mat)   #        2-sample test for equality of proportions with continuityRead More →

La fonction binom.test() réalise un test de conformité d’une proportion mesurée dans un échantillon et permet de savoir si cette proportion est différente d’une valeur cible. Pour cela on compare Pobs à Pthéo, dans un échantillon de n individus.   Pour réaliser ce test il est nécessaire d’avoir un échantillonnage aléatoire et que la condition suivante soit respecter : n Pobs  ≥ 5  et n (1-Pobs ) ≥ 5   On utilise la fonction binom.test(x, n, p) où :                                x : nombre de succès                                n : nombre d’essais                                p : probabilité théorique   Exemple :                # 92Read More →