Lorsque l’on réalise des scripts qui vont tourner un certain temps avant d’aboutir au résultat final, il est essentiel d’en optimiser le fonctionnement pour gagner du temps. Il nous faut pour cela un bon indicateur : comment savoir le temps que dure une fonction ou un script ? Vous pouvez utiliser la fonction system.time system.time(for ( i in 1:10000){print(i)})system.time(for ( i in 1:10000){cat(i)})Read More →

Lorsque l’on réalise des scripts qui vont tourner un certain temps avant d’aboutir au résultat final, il est essentiel d’en optimiser le fonctionnement pour gagner du temps. Il nous faut pour cela un bon indicateur : comment savoir le temps que dure une fonction ou un script ? Vous pouvez utiliser la fonction system.time system.time(for ( i in 1:10000){print(i)})system.time(for ( i in 1:10000){cat(i)})Read More →

L’objectif est de calculer une moyenne sur des réplicats techniques/biologiques.Tous les réplicats d’une condition doivent avoir le même nom. Tout d’abord on crée une matrice d’accueil pour les résultats.Nombre de niveaux : le tableau initial contient y réplicats pour z conditions, donc y * z lignes.La matrice d’accueil n’aura donc plus que z lignes. Prenons l’exemple du jeu de données "iris".Calculons les moyennes par variété pour chaque variable. data(iris)niveaux<-length(levels(iris$Species))iris.moyenne<-matrix(nrow=niveaux, ncol=(ncol(iris)-1))#ensuite on calcule la moyenne pour chaque condition, par variablefor (i in 1:(ncol(iris)-1)){iris.moyenne[,i]<-tapply(iris[,i], iris$Species, mean)}#il n’y a plus qu’à améliorer l’allure des résultatscolnames(iris.moyenne)<-colnames(iris[, 1:4])rownames(iris.moyenne)<-levels(iris$Species)iris.moyenne On peut également créer une matrice pour des écarts-types par exemple, en remplaçantRead More →

L’objectif est de calculer une moyenne sur des réplicats techniques/biologiques.Tous les réplicats d’une condition doivent avoir le même nom. Tout d’abord on crée une matrice d’accueil pour les résultats.Nombre de niveaux : le tableau initial contient y réplicats pour z conditions, donc y * z lignes.La matrice d’accueil n’aura donc plus que z lignes. Prenons l’exemple du jeu de données « iris ».Calculons les moyennes par variété pour chaque variable. data(iris)niveaux<-length(levels(iris$Species))iris.moyenne<-matrix(nrow=niveaux, ncol=(ncol(iris)-1))#ensuite on calcule la moyenne pour chaque condition, par variablefor (i in 1:(ncol(iris)-1)){iris.moyenne[,i]<-tapply(iris[,i], iris$Species, mean)}#il n’y a plus qu’à améliorer l’allure des résultatscolnames(iris.moyenne)<-colnames(iris[, 1:4])rownames(iris.moyenne)<-levels(iris$Species)iris.moyenne On peut également créer une matrice pour des écarts-types par exemple, en remplaçantRead More →

Pour comparer 2 moyennes, vous pouvez utiliser le test de student. On se place dans le cas où l’on a deux séries de valeurs dont on veut comparer la moyenne.Les conditions pour utiliser ce test sont en pratique très peu contraignantes et il n’est pas vraiment nécessaire de s’embêter avec la normalités des données car : le test de student est très robuste à la non normalité des données dès que l’on a plus de 30 individus (n peut même descendre à 15), on a toujours quelque chose qui suit (plus ou moins) une loi normale les tests de normalité sont très très peu puissantsRead More →

Pour comparer 2 moyennes, vous pouvez utiliser le test de student. On se place dans le cas où l’on a deux séries de valeurs dont on veut comparer la moyenne.Les conditions pour utiliser ce test sont en pratique très peu contraignantes et il n’est pas vraiment nécessaire de s’embêter avec la normalités des données car : le test de student est très robuste à la non normalité des données dès que l’on a plus de 30 individus (n peut même descendre à 15), on a toujours quelque chose qui suit (plus ou moins) une loi normale les tests de normalité sont très très peu puissantsRead More →

Il peut être pratique parfois de créer un facteur  correspondant à l’interaction de 2 facteurs. Pour cela vous pouvez utiliser tout simplement la fonction interaction() x=letters[rep(seq(from=1,to=5,by=1),rep(5,5))]y=rep(seq(from=1,to=5,by=1),5)interaction(x,y,sep="_")#où sep est le séparateur entre les deux charactèresRead More →

Il peut être pratique parfois de créer un facteur  correspondant à l’interaction de 2 facteurs. Pour cela vous pouvez utiliser tout simplement la fonction interaction() x=letters[rep(seq(from=1,to=5,by=1),rep(5,5))]y=rep(seq(from=1,to=5,by=1),5)interaction(x,y,sep= »_ »)#où sep est le séparateur entre les deux charactèresRead More →