Vous savez comment filtrer un jeu de données avec dplyr ? : filter(), on peut donc utiliser une règle pour filtrer sur les valeurs manquantes (les fameux NA) en utilisant la fonction is.na. library(dplyr) df <- tibble(x1 = c(1, 2, NA, 4), x2 = c(« a », NA, « b », « c »), y = c(NA, TRUE, FALSE, TRUE)) df %>% filter(!is.na(x1)) Mais si vous voulez supprimer les lignes qui contiennent des NA dans plusieurs colonnes, voire toutes les colonnes, il vaut mieux utiliser drop_na du package {tidyr}. Vous pourrez même utiliser les « helpers » comme pour la fonction select de {dplyr} pour choisir les colonnes avec des règles. library(tidyr) dfRead More →

Comme on est dans le {tidyverse}, on va utiliser les bons termes : Nous allons utiliser le pipe pour rendre le code plus clair ( Le pipe, qu’est-ce que c’est ? ) On ne travaille plus avec des dataframes, mais avec des tibble: (tibble ou data.frame ?) Et donc on ne supprime pas de ligne, mais on filtre les données en fonction d’une condition. En effet, si vous souhaitez retirer des lignes de données, vous avez sûrement une bonne raison. Cette bonne raison se trouve dans les données elles-mêmes. Vous utilisez donc cette information pour filtrer les données. library(dplyr) iris %>% filter(Species != « setosa ») PourRead More →

Une anova avec modèle mixte comme VARCOMP dans SAS Créons d’abord un jeu de données. On souhaite déterminer la précision et la répétabilité d’une analyse. Pour cela, la mesure est effectuée par 2 techniciens différents, sur des concentrations de produits différents sur 3 jours différents et avec 2 réplicats. library(dplyr) set.seed(42) data <- tibble( concentration = rep(c(10, 30, 50, 80), 3*2), technicien = rep(c(« A », « B »), each = 3*2*2), jour = rep(rep(1:3, each = 2*2), 2), replicat = rep(1:2, times = 2*3*2)) %>% mutate(mesure = ifelse( technicien == « A », 0.2 * concentration + rnorm(12, sd = 3), 0.2 * concentration + rnorm(12, sd = 2))) dataRead More →