Le test de Kolmogorov-Smirnov est un test d’hypothèse utilisé pour décider si un échantillon suit une loi de probabilité donnée ou si deux échantillons suivent la même loi. Sous R on peut réaliser ce test avec la fonction ks.test() #on crée des échantillonsa<-rnorm(100,mean=0,sd=1)b<-rgamma(100,shape=1,rate=0.8)c<-rnorm(50,mean=0,sd=1)#a et b proviennent-ils de la même loi?ks.test(a,b)#p=7.5e-11 on rejette l’hypothèse nulle#a et c?ks.test(a,c)#p=0.35 on accepte l’hypothèse nulle#a provient-il d’une loi gamma avec 3 comme paramètre de forme et 2 pour le taux?ks.test(a, »pgamma »,3,2)#p value très faible on rejette l’hypothèse#a provient-il d’une loi normale?ks.test(a, »pnorm »)#p=0.13 on accepte l’hypothèse Comme pour tous les tests, faites bien attention à ce que veut réellement dire ce test, prenezRead More →

Le test de Shapiro-Wilk teste l’hypothèse nulle selon laquelle l’échantillon est issu d’une population normalement distribuée. Si la p-value est inférieure au niveau alpha fixé (souvent 0.05) alors on rejette l’hypothèse nulle et on en conclut que l’échantillon est issu d’une population qui n’est pas normalement distribuée. Voici un exemple avec R : #on simule des échantillons#d issu d’une loi normaled<-rnorm(100, mean = 5, sd = 3)#e issu d’une loi uniformee<-runif(100, min = 2, max = 4)# on réalise un test de shapiroshapiro.test(d)qqnorm(d) #p=0.35 on ne rejette pas l’hypothèse et on vérifie avec un QQplotshapiro.test(e)qqnorm(e) # p=0.00036 on rejette l’hypothèse et on vérifie avec unRead More →

Le diagramme Quantile-Quantile est un outil graphique qui permet de comparer la pertinence de l’ajustement de données à un modèle théorique (loi de probabilité). Cela peut se révéler très pratique pour analyser la normalité des résidus d’un modèle linéaire par exemple. Cet outil permet également de comparer deux distributions : un alignement selon la première bissectrice indique la présence d’une identité de loi. R présente des fonctions de bases permettant de tracer des QQplot : qqplot produit un QQplot de deux jeux de donnéesqqnorm produit un QQplot pour une loi normaleqqline trace la droite de Henry Voyons un exemple d’utilisation #nombres aléatoires tirés d’une loi#normaleRead More →

find(nom_fonction) # renvoie le nom du package dans lequel se trouve la fonctionapropos(nom_fonction) # renvoie un vecteur de caractères avec le nom de toutes les fonctions en lien avec la premièredemo(graphics)# propose une démonstration de l’utilisation des graphiques avec les codes et les graphiques associés. A la place de graphics on peut également écrire persp, plotmath…objects(grep(« library »,search())) # liste toutes les fonctions présentes dans la librairieRead More →

La commande ci-dessous vous retourne la liste des paramètres graphiques et leur valeur trellis.par.get() Pour changer un paramètre, par example axis.text, la commande est la suivante taille<- trellis.par.get(« axis.text ») # extraction du paramètre taille$cex <-5   # changement de sa valeur trellis.par.set(« axis.text », taille) # sauvegarde de la nouvelle valeur  Read More →

Ceci est une liste non exhaustive des paramètres graphiques de la library graphique de base. par() # fonction des paramètres graphiquespar(mar=c(1,1,1,1)) #changer la taille de la marge (bas, gauche, haut, droite)par(oma=c(1,1,1,1)) #changer la taille de la marge extérieure (bas, gauche, haut, droite) par(las=2) #changer l’orientation du texte 0 : toujours parallèle à l’axe [default], 1 : toujours horizontal, 2 : toujours perpendiculaire, 3 : toujours verticalpar(font=1)  #la police à utiliser 1 : normal, 2 : gras , 3 : italiquepar(cex) #la taille du texte Pour plus d’infos, n’oubliez pas ?parRead More →

La fonction « by » est très intéressante pour éviter des boucles « for » et ainsi optimiser le code data(iris)summary(iris)by(iris[,-5],iris[,5],mean)  ou encore quant vous voulez effectuer une fonction qui n’est pas définie. by(iris[,-5],iris[,5],function(ob){#mettez ici l’opération que vous voulez faire sur le subsetreturn()})  Le problème peut être que by retourne une liste et que l’on voudrait avoir un tableau de données. C’est ce que fait la fonction do.call, elle prend une liste et effectue une action dessus (ici rbind). data(iris)summary(iris)do.call(rbind,by(iris[,-5],iris[,5],mean) )Read More →

R possède de nombreuses fonctions de base souvent bien utiles, en voici quelques unes. On crée deux vecteurs : a<-c(1,2,3,4,5,6,7,8,9,10)b<-c(11,12,13,14,15,16,17,18,19,20) Longueur des vecteurs : length(a)length(b) Minimum et maximum : min(a)min(b)max(a)max(b) Etendue : range(a)range(b) Moyenne et médiane : mean(a)mean(b)median(a)median(b) Quantile et écart inter-quantile : quantile(a)quantile(b)IQR(a)IQR(b) Variance et écart-type : var(a)var(b)sd(a)sd(b) Concaténation de a et b : c<-c(a,b)cd<-c(b,a)d Somme des éléments du vecteur, produit, différence des éléments consécutifs du vecteur, somme cummulée : v<-c(1,2,3,4)sum(v) #1+2+3+4prod(v) #1*2*3*4diff(v) #2-1,3-2,4-3cumsum(v) #1, 1+2, 1+2+3, 1+2+3+4Read More →