R peut tracer la courbe d’une fonction f(x) pour peu qu’on connaisse sa formule et qu’on lui fixe des bornes.  curve(expr=1/(sqrt(2*pi)*0.3)*exp(-((x-0)^2/(2*0.3^2))), from=-1.5, to= 1.5) La fonction curve() prend (entre autres) comme argument expr (l’expression de la fonction, ici la densité de probabilité de la loi normale), from (la borne inférieure de l’intervalle à tracer) et to (la borne supérieure de l’intervalle à tracer) Par défaut curve() utilise un paramètre n fixé à 101 : c’est le nombre de x compris entre from et to qui seront évalués par l’expression renseignée dans expr. Plus n est petit, plus la courbe sera « anguleuse »Read More →

jdd <- data.frame(deslettres=letters[1:10],                   desnombres=seq(1:10),                   desfacteurs=c(rep(« oui »,5), rep(« non », 5))) levels(jdd$deslettres) [1] « a » « b » « c » « d » « e » « f » « g » « h » « i » « j » # il y a 10 niveaux pour la variable qualitative « deslettres » # en filtrant sur les nombres…. library(dplyr) unextrait<-filter(jdd,desnombres > 5) levels(unextrait$deslettres) [1] « a » « b » « c » « d » « e » « f » « g » « h » « i » « j » # …le nouveau jeu de données garde les anciens noms de niveaux de « deslettres » Pour s’en débarrasser, depuis R 2.12.0, la fonction droplevels() rend cette opération aisée… # …sur tout le jeu de données :  droplevels(unextrait) summary(unextrait) # …sur une variable en particulier : droplevels(unextrait$deslettres) summary(unextrait) # …sur tout le jeuRead More →

La fonction PCA() permet d’effectuer une ACP. library(FactoMineR) res_pca <- PCA (iris, quali.sup=5) #On réalise une ACP sur les 4 variables quantitatives du jeu de données iris #La 5ème variable qui correspond au nom de la variété est qualitative #Nous plaçons cette variable en supplémentaire, #cette variable ne participera donc pas à la construction de l’ACP, #mais elle apportera de l’information supplémentaire   plot.PCA(res_pca,col.quali= »blue », label= »quali ») #La fonction plot.PCA contient de nombreux paramètres modulables #ici nous choisissons la couleur de la variable qualitative #et de cacher l’étiquette des individus grâce au paramètre « label »   Pour pouvoir décrire les résultats de cette analyse nous avons besoin d’étudierRead More →

Contrairement à la fonction residuals(), la fonction rstudent() permet d’obtenir des résidus de même variance. Ce critère est nécessaire pour pouvoir étudier et comparer les résidus. reg_simp <- lm(Sepal.Length~Petal.Length, data=iris) #On réalise une régréssion linéaire   residus=rstudent(reg_simp) #On calcule les residus   plot(residus, ylab= »Résidus ») #On represente les résidus dans un graphique   abline(h=c(-2,0,2), lty=c(2,1,2)) #La fonction abline permet d’ajouter des droites d’ordonnées -2, 0 et 2 En théorie, 95% des résidus se trouvent dans l’intervalle [-2,2]. C’est le cas ici puisque seulement 4 individus sur 150 sont en dehors de cet intervalle. Les individus à l’extérieur de l’intervalle sont des individus extrêmes.   Read More →

La régression linéaire simple permet de modéliser une relation linéaire entre deux variables quantitatives dans le but d’expliquer un phénomène ou de le prédire. #On commence par représenter les données : plot(Sepal.Length~Petal.Length, data=iris) #On constate que la relation entre la largeur des sépales et celle des pétales semble être linéaire   #On estime les paramètres : Reg.simp <- lm(Sepal.Length~Petal.Length, data=iris)   #Call: #lm(formula = Sepal.Length ~ Petal.Length, data = iris)   #Residuals: #     Min       1Q   Median       3Q      Max #-1.24675 -0.29657 -0.01515  0.27676  1.00269   #Coefficients: #             Estimate Std. Error t value Pr(>|t|)    #(Intercept)   4.30660    0.07839   54.94   <2e-16 *** #Petal.Length  0.40892    0.01889   21.65   <2e-16 *** #— #Signif. codes: Read More →

Le test d’égalité teste l’hypothèse H0 : µ1 = µ2. La puissance d’un test est la probabilité de rejeter l’hypothèse H0 sans commettre une erreur, c’est-à-dire lorsque µ1 est effectivement  différente de µ2.   Nous voulons donc calculer la puissance du test avec un nombre n d’individus grâce à la fonction power.t.test().   Exemple : dans une expérience nous avons un écart type de 1.7, une moyenne de 1 et on prend le seuil classique α=5%. On calcule la puissance du test avec 15 individus par groupe. power.t.test(n=15, delta=1, sd=1.7, sig.level=0.05)$power [1] 0.3430475     Si l’on décide de n’utiliser que 15 individus dans l’expérimentation, alors onRead More →

Les conditions permettent d’exécuter une commande en fonction d’une ou plusieurs conditions. La forme la plus simple s’écrit :   if (condition){ +    commande1 +    commande2 +    … +}   Exemple :   B<-TRUE x<-2   if (B==TRUE){      x<-x+1      y<-10 }   x [1] 3 y [1] 10   Dans ce cas là si B est différent de TRUE rien n’est effectué. Pour ajouter une des commandes lorsque que la première condition n’est pas vérifiée on utilise else :   if (condition){ +    commande1 +    commande2 +    … } else (condition){ +    commande1 +    commande2 +    … +}   Exemple : B<-FALSE x<-2   if (B==TRUE){     Read More →