Vous n’avez plus envie de voir vos légendes sur la droite ? Vous mourrez d’envie de pouvoir personnaliser encore plus votre graphique ? Faites appel à la fonction theme(), et à son argument legend.position — ce dernier vous permet de placer la légende sur le bord que vous désirez. library(ggplot2) data(« iris ») ggplot(iris, aes(x= Sepal.Length, y = Sepal.Width, col = Species)) + geom_point() + theme(legend.position = « bottom ») Les cinq arguments possibles sont les quatre bords, ainsi que la position none, pour faire disparaitre la légende. theme(legend.position = « left ») theme(legend.position = « right ») theme(legend.position = « bottom ») theme(legend.position = « top ») theme(legend.position = « none »)Read More →

Si vous souhaitez unifier plusieurs colonnes en une seule, faites appel à la fonction unite(), issue du package tidyr. Cette fonction prends en premier argument le nom de l’objet contenant le tableau, la colonne cible, les colonnes à lier, puis un éventuel séparateur. Notez que le séparateur de base est « _ ». data(« msleep ») library(tidyr) unite(msleep, genusvore, genus, vore, sep = « -« )Read More →

Votre colonne contient deux variables (ou plus), et vous avez besoin de la séparer ? Pour transformer xx_yy en deux colonnes qui contiendront xx et yy, faites appel à la fonction separate() du package tidyr ! separate prend quatre arguments principaux : le tableau, le nom de la colonne à séparer, les noms des colonnes cibles, et le séparateur. library(tidyr) data(« presidential ») separate(presidential, start, c(« y », »m », « d »), sep = « -« )Read More →

Commençons par un point important : un tibble est un data.frame… mais un data.frame amélioré ! Élément central du tidyverse, cette forme diffère des data.frame natifs dans deux comportements : l’affichage : les tibbles s’adaptent à l’écran, et chaque colonne affiche son type. la sélection : elle est plus stricte dans un tibble — elle ne se fait jamais en partial match, et un message d’erreur s’affiche lorsque vous sélectionner un élément qui n’existe pas. Pour créer un tibble, deux solutions : la conversion depuis un data.frame, ou la création à la main. library(tibble) data(« swiss ») as_tibble(swiss) tibble(x = 1:4, y = 5:8)Read More →

La fonction labs(), à utiliser pendant la construction de votre ggplot, vous permet d’intégrer titre, sous-titres, et légendes. ggplot(iris, aes(Sepal.Width, Sepal.Length)) + geom_point() + labs(title = « Mon titre », subtitle = « Mon sous titre n sur deux lignes », caption = « Ma légende », x = « Mon axe x », y = « Mon axe y »)Read More →

Pour ajouter une colonne, direction la fonction mutate. Avec celle-ci, vous pouvez insérer un objet externe au tableau (par exemple une liste), ou le résultat de l’opération sur une ou plusieurs colonnes. data(« faithfuld ») library(dplyr) mutate(faithful, index= 1:nrow(faithful), er.wa = eruptions / waiting)Read More →

Vous avez besoin d’un résumé rapide sur une ou plusieurs variables de votre tableau ? Direction la fonction summarise (ou summarize, selon vos affinités). data(« who ») who %>% summarise(minimum = min(year)) Notez qu’il est possible de combiner plusieurs résumés dans cette fonction. who %>% summarise(minimum = min(year), maximum = max(year))Read More →

Pour ordonner un tableau en fonction d’une colonne, faites appel à arrange(), issu de dplyr. Cette fonction prend en premier argument l’objet contenant le tableau, puis la colonne qui servira de base pour votre tri. data(« midwest ») midwest %>% arrange(poptotal) Par défaut, la colonne est triée en ordre croissant. Un comportement que vous pouvez modifier avec desc(). midwest %>% arrange(desc(poptotal))Read More →

Votre jeu de données est trop grand ? Vous avez trop de colonnes ? Vous pouvez en sélectionner très simplement avec la fonction select() de dplyr. Comme toutes les fonctions du tidyverse, le premier argument est l’objet contenant le jeu de données. Puis, il suffit d’entrer le nom des colonnes à conserver. library(dplyr) data(« smiths ») select(smiths, subject, age)Read More →