Dans R il est possible d’effectuer des comparaisons ou des tests qui vont sortir la valeur TRUE si vrai et FALSE si faux Voici les différents opérateur que l’on peut utilser > # strictement supérieur< # strictement inférieur>= # supérieur ou égal<= # inférieur ou égal!= # différent== # égal   ( oui il faut mettre == et pas =) un peu moins utile mais à avoir sous le coude au cas où: ! # négation &, && # et|, || # ou inclusif (retournera VRAI si l’une ou l’autre ou les deux propositions sont vraies)xor(,) # ou exclusif (retournera VRAI si l’une ou l’autre maisRead More →

Dans R il est possible d’effectuer des comparaisons ou des tests qui vont sortir la valeur TRUE si vrai et FALSE si faux Voici les différents opérateur que l’on peut utilser > # strictement supérieur< # strictement inférieur>= # supérieur ou égal<= # inférieur ou égal!= # différent== # égal   ( oui il faut mettre == et pas =) un peu moins utile mais à avoir sous le coude au cas où: ! # négation &, && # et|, || # ou inclusif (retournera VRAI si l’une ou l’autre ou les deux propositions sont vraies)xor(,) # ou exclusif (retournera VRAI si l’une ou l’autre maisRead More →

De nombreux systèmes sont modélisés par des équations différentielles ordinaires. R peut permettre de résoudre certains de ces systèmes et aussi d’estimer leurs paramètres. On prend ici l’exemple d’un modèle épidémiologique temporel SI. #edo SIXlibrary(deSolve) # on utilise deSolve#on définit le système dans une fonction six icisix<-function(t,x,parms){    with( as.list(c(parms,x)),{    rp<-apexp(-bpt)    rs<-asexp(-0.5(log(t/gs)/bs)^2)        dI<- (rpXS+rsIS)    dS<- -(rpXS+rsIS)    res<-c(dI,dS)    list(res)})}#on définit les paramètres pour la simulation du systèmeparms<-c(ap=0.002, bp=0.0084, as=5.9e-7, bs=0.25, gs=1396, X=1, N=1010)#on crée un vecteur pour le tempstimes<-seq(0:3000)#valeurs initiales des variables (ici tous les individus sont sains au début)y<- xstart <-(c(I = 0, S = 1010))#on résout le système avec la fonction lsodaout<-as.data.frame(lsoda(xstart, times, six,Read More →

De nombreux systèmes sont modélisés par des équations différentielles ordinaires. R peut permettre de résoudre certains de ces systèmes et aussi d’estimer leurs paramètres. On prend ici l’exemple d’un modèle épidémiologique temporel SI. #edo SIXlibrary(deSolve) # on utilise deSolve#on définit le système dans une fonction six icisix<-function(t,x,parms){    with( as.list(c(parms,x)),{    rp<-ap*exp(-bp*t)    rs<-as*exp(-0.5*(log(t/gs)/bs)^2)        dI<- (rp*X*S+rs*I*S)    dS<- -(rp*X*S+rs*I*S)    res<-c(dI,dS)    list(res)})}#on définit les paramètres pour la simulation du systèmeparms<-c(ap=0.002, bp=0.0084, as=5.9e-7, bs=0.25, gs=1396, X=1, N=1010)#on crée un vecteur pour le tempstimes<-seq(0:3000)#valeurs initiales des variables (ici tous les individus sont sains au début)y<- xstart <-(c(I = 0, S = 1010))#on résout le système avec la fonction lsodaout<-as.data.frame(lsoda(xstart, times, six,Read More →

L’estimateur de Kaplan-Meier donne la fonction de survie non paramétrique.Pour l’obtenir sous R on peut utiliser le package survival. On se place ici dans un cas très simple où il n’y a ni censure ni troncature.Pour bien comprendre le code, je vous conseille vivement de regarder la documentation du package en question!! #survival analysisls()rm(list=ls())library(survival)#on crée un jeu de données correspondant à des durées (étudiées dans l’analyse de survie) z<-c(14,14,14,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,23)d<-data.frame(delay=z)#on crée une colonne status, ici tous les individus sont "morts" pendant l’expérience # mort au sens de l’analyse de survie d$status<-1 s<-survfit(Surv(d$delay,d$status)~1)plot(s,main="survival function")Read More →

On cherche souvent à modéliser un échantillon par une loi de probabilité. A partir d’un jeu de données, comment peut-on trouver les paramètres d’une loi préalablement fixée? Plusieurs méthodes peuvent être utilisées. On prend l’exemple ici du délai entre l’infection d’un individu et la détection de cet individu comme malade.On modélise ici ce délai (en jours) par une loi de Weibull (on peut aussi essayer les lois gamma et lognormale par exemple) La méthode la plus simple est d’utiliser la fonction fitdistr du package MASS.Cette fonction permet d’ajuster de nombreuses lois par maximum de vraisemblance. Regardons ce que ça donne pour une loi Weibull. #onRead More →

L’estimateur de Kaplan-Meier donne la fonction de survie non paramétrique.Pour l’obtenir sous R on peut utiliser le package survival. On se place ici dans un cas très simple où il n’y a ni censure ni troncature.Pour bien comprendre le code, je vous conseille vivement de regarder la documentation du package en question!! #survival analysisls()rm(list=ls())library(survival)#on crée un jeu de données correspondant à des durées (étudiées dans l’analyse de survie) z<-c(14,14,14,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,23)d<-data.frame(delay=z)#on crée une colonne status, ici tous les individus sont « morts » pendant l’expérience # mort au sens de l’analyse de survie d$status<-1 s<-survfit(Surv(d$delay,d$status)~1)plot(s,main= »survival function »)Read More →

On cherche souvent à modéliser un échantillon par une loi de probabilité. A partir d’un jeu de données, comment peut-on trouver les paramètres d’une loi préalablement fixée? Plusieurs méthodes peuvent être utilisées. On prend l’exemple ici du délai entre l’infection d’un individu et la détection de cet individu comme malade.On modélise ici ce délai (en jours) par une loi de Weibull (on peut aussi essayer les lois gamma et lognormale par exemple) La méthode la plus simple est d’utiliser la fonction fitdistr du package MASS.Cette fonction permet d’ajuster de nombreuses lois par maximum de vraisemblance. Regardons ce que ça donne pour une loi Weibull. #onRead More →