Comment supprimer les NA (valeurs manquantes) dans R avec dplyr ?
Vous savez comment filtrer un jeu de données avec dplyr ? : filter(), on peut donc utiliser une règle pour filtrer sur les valeurs manquantes (les fameux NA) en utilisant la fonction is.na. library(dplyr) df <- tibble(x1 = c(1, 2, NA, 4), x2 = c(« a », NA, « b », « c »), y = c(NA, TRUE, FALSE, TRUE)) df %>% filter(!is.na(x1)) Mais si vous voulez supprimer les lignes qui contiennent des NA dans plusieurs colonnes, voire toutes les colonnes, il vaut mieux utiliser drop_na du package {tidyr}. Vous pourrez même utiliser les « helpers » comme pour la fonction select de {dplyr} pour choisir les colonnes avec des règles. library(tidyr) dfRead More →