Dans les résultats d’analyse statistique, R affiche souvent des étoiles à côté des p values avec le code suivant : Signif. codes:  0 ‘’ 0.001 ‘’ 0.01 ‘’ 0.05 ‘.’ 0.1 ‘ ’ 1 Il est possible de les enlever: #on utilise les données irisirissummary(iris)#pour l’exemple on fait une analyse de variance : la longueur des sépales est-elle expliquée par l’espèce?reg<-lm(iris$Sepal.Length~iris$Species)anova(reg)summary(reg) R affiche les résultats avec les étoiles pour les p-values : Analysis of Variance Table Response: iris$Sepal.Length              Df Sum Sq Mean Sq F value    Pr(>F)    iris$Species   2 63.212  31.606  119.26 < 2.2e-16 ***Residuals    147 38.956   0.265       On décide de les enlever en utilisant optionsRead More →

On a parfois besoin d’un jeux de données qui reprend toutes les combinaisons possibles de plusieurs facteurs.Bien sûr on peut le faire à la main, mais il y a beaucoup plus intelligent : la fonction expand.grid fait ça très bien. expand.grid(c("voiture","velo"),c("bleue","rouge","vert"),c("mercedes","peugeot")) Cette commande permet de générer toutes les combinaisons possibles : voiture bleue mercedes, voiture bleue peugeot…Read More →

On a parfois besoin d’un jeux de données qui reprend toutes les combinaisons possibles de plusieurs facteurs.Bien sûr on peut le faire à la main, mais il y a beaucoup plus intelligent : la fonction expand.grid fait ça très bien. expand.grid(c(« voiture », »velo »),c(« bleue », »rouge », »vert »),c(« mercedes », »peugeot »)) Cette commande permet de générer toutes les combinaisons possibles : voiture bleue mercedes, voiture bleue peugeot…Read More →

R nous donne la possibilité, très pratique, de créer des fonctions personnalisées.Voici l’architecture globale : nomdemafonction<-function(variable1,variable2…){#ici on met le contenu de la fonction (généralement on effectue des transformations aux variables passées en argument)return(Variabledesortie)# il s’agit du résultat que va renvoyer la fonction}#une fois la fonction créée on peut l’utiliser: nomdemafonction(varA,varB) Contrairement à d’autres languages, il n ‘y a pas de contrôle du type de variable que l’on peut utiliser. Il faudra l’inclure dans la fonction pour, par exemple, vérifier que la variable A est bien un vecteur (et pas un data.frame par exemple) Voici un exemple de fonction, il s’agit d’une fonction simple qui vaRead More →

Les packages contiennent un certain nombre de fonctions. Il peut être intéressant de voir comment elles sont codées, pour les comprendre ou les améliorer par exemple. #il suffit de taper son nomlm  # affiche le code source de la fontion lmpage(lm) # affiche une nouvelle fenêtre avec le code source bien mis en forme (avec indentation)dput(lm, control = "useSource") # permet de voir les commentaires s’il y en a, en pratique page utilise dputpage(lm, control = "useSource") # cela fonctionne donc aussi.Read More →

Les packages contiennent un certain nombre de fonctions. Il peut être intéressant de voir comment elles sont codées, pour les comprendre ou les améliorer par exemple. #il suffit de taper son nomlm  # affiche le code source de la fontion lmpage(lm) # affiche une nouvelle fenêtre avec le code source bien mis en forme (avec indentation)dput(lm, control = « useSource ») # permet de voir les commentaires s’il y en a, en pratique page utilise dputpage(lm, control = « useSource ») # cela fonctionne donc aussi.Read More →

R nous donne la possibilité, très pratique, de créer des fonctions personnalisées.Voici l’architecture globale : nomdemafonction<-function(variable1,variable2…){#ici on met le contenu de la fonction (généralement on effectue des transformations aux variables passées en argument)return(Variabledesortie)# il s’agit du résultat que va renvoyer la fonction}#une fois la fonction créée on peut l’utiliser: nomdemafonction(varA,varB) Contrairement à d’autres languages, il n ‘y a pas de contrôle du type de variable que l’on peut utiliser. Il faudra l’inclure dans la fonction pour, par exemple, vérifier que la variable A est bien un vecteur (et pas un data.frame par exemple) Voici un exemple de fonction, il s’agit d’une fonction simple qui vaRead More →

Une variable globale est une variable qui sera accessible partout dans R. C’est-à-dire même quand vous sourcez un fichier, peu importe votre espace de nom. Il n’est pas très propre d’utiliser cette méthode, mais cela peut rendre service. varglob <<- 4 # est une variable globalevarpasglob <- 4# n’est pas globaleRead More →

Le couple save et load a l’inconvénient de forcer le nom de l’objet que vous voulez charger.Exemple : si vous avez enregistré la variable "a" qui vaut 3 grace à save, load vous donnera une variable "a" qui vaut 3, mais vous n’allez pas pouvoir charger cette variable dans un autre objet, et cela écrasera votre variable "a" d’origine. rm(list=ls(all=TRUE)) a<-5 save(a,file="fichier") a<-3 load("fichier") a # a vaut maintenant 5 , et avec load et save il n’est pas possible de charger ce 5 dans une autre variable pour "sauvegarder" votre 3 dput et dget permettent de stocker un objet dans un fichier et deRead More →