Le test du khi2 permet de tester l’indépendance de deux variables pour cela nous calculons la valeur de la statistique ainsi que la probabilité critique.
Pour pouvoir réaliser ce test il est nécessaire d’avoir un échantillonnage aléatoire dans chaque échantillon et que chaque effectif théorique soit supérieur ou égal à 5.
Pour effectuer ce test nous utilisons la fonction chisq.test().
Exemple :
Nous nous demandons si nombre de fumeurs dépend de l’âge ou non, c’est-à-dire : l’âge influence t’il la propension à fumer?
mat<-matrix(c(15,10,15,20,10,10),3)
dimnames(mat) <- list(c("15-30","31-45","46-70") ,c("oui","non"))
mat
oui non
15-30 15 20
31-45 10 10
46-70 15 10
chisq.test(mat)
# Pearson's Chi-squared test
#data: mat
#X-squared = 1.7143, df = 2, p-value = 0.4244
La p-value est supérieure à 0.05, nous ne pouvons donc pas considérer que les variables sont liées.