Le critère d’Akaike (AIC) est un critère utilisé pour la sélection de modèles. Ce critère représente un compromis entre le biais diminuant avec le nombre de paramètres libres et la parcimonie, volonté de décrire les données avec le plus petit nombre de paramètres possible. Il se calcule de la façon suivante -2log-likelihood + knpar. Par défaut on a souvent k=2. Le meilleur modèle est celui qui possède l’AIC le plus faible. On obtient ce critère en utilisant la fonction AIC(objet,k=?), k=2 par défaut. Prenons un exemple library(MASS) #pour la fonction fitdistr #  z est un vecteur contenant les données, on essaie de modéliser ces données parRead More →

De nombreux systèmes sont modélisés par des équations différentielles ordinaires. R peut permettre de résoudre certains de ces systèmes et aussi d’estimer leurs paramètres. On prend ici l’exemple d’un modèle épidémiologique temporel SI. #edo SIXlibrary(deSolve) # on utilise deSolve#on définit le système dans une fonction six icisix<-function(t,x,parms){    with( as.list(c(parms,x)),{    rp<-ap*exp(-bp*t)    rs<-as*exp(-0.5*(log(t/gs)/bs)^2)        dI<- (rp*X*S+rs*I*S)    dS<- -(rp*X*S+rs*I*S)    res<-c(dI,dS)    list(res)})}#on définit les paramètres pour la simulation du systèmeparms<-c(ap=0.002, bp=0.0084, as=5.9e-7, bs=0.25, gs=1396, X=1, N=1010)#on crée un vecteur pour le tempstimes<-seq(0:3000)#valeurs initiales des variables (ici tous les individus sont sains au début)y<- xstart <-(c(I = 0, S = 1010))#on résout le système avec la fonction lsodaout<-as.data.frame(lsoda(xstart, times, six,Read More →